Playing Ping Pong with Pins: Cortical and Microtubule-Induced Polarity

نویسنده

  • Julie Ahringer
چکیده

Cortical cell polarity controls mitotic spindle orientation in many cell types. In this issue of Cell, it is turned around and shown that the transfer of polarity information between the cortex and the spindle is not just one way. In Drosophila neuroblasts, the spindle also has polarizing activity on the cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microtubule-induced Pins/Galphai cortical polarity in Drosophila neuroblasts.

Cortical polarity regulates cell division, migration, and differentiation. Microtubules induce cortical polarity in yeast, but few examples are known in metazoans. We show that astral microtubules, kinesin Khc-73, and Discs large (Dlg) induce cortical polarization of Pins/Galphai in Drosophila neuroblasts; this cortical domain is functional for generating spindle asymmetry, daughter-cell-size a...

متن کامل

Microtubule-Induced Pins/Gαi Cortical Polarity in Drosophila Neuroblasts

Cortical polarity regulates cell division, migration, and differentiation. Microtubules induce cortical polarity in yeast, but few examples are known in metazoans. We show that astral microtubules, kinesin Khc-73, and Discs large (Dlg) induce cortical polarization of Pins/Gai in Drosophila neuroblasts; this cortical domain is functional for generating spindle asymmetry, daughtercell-size asymme...

متن کامل

Sgt1 acts via an LKB1/AMPK pathway to establish cortical polarity in larval neuroblasts.

Drosophila neuroblasts are a model system for studying stem cell self-renewal and the establishment of cortical polarity. Larval neuroblasts generate a large apical self-renewing neuroblast, and a small basal cell that differentiates. We performed a genetic screen to identify regulators of neuroblast self-renewal, and identified a mutation in sgt1 (suppressor-of-G2-allele-of-skp1) that had fewe...

متن کامل

Identification of an Aurora-A/Pins/ Dlg Spindle Orientation Pathway using Induced Cell Polarity in S2 Cells

Asymmetric cell division is intensely studied because it can generate cellular diversity as well as maintain stem cell populations. Asymmetric cell division requires mitotic spindle alignment with intrinsic or extrinsic polarity cues, but mechanistic detail of this process is lacking. Here, we develop a method to construct cortical polarity in a normally unpolarized cell line and use this metho...

متن کامل

Identification of an Aurora-A/PinsLINKER/ Dlg Spindle Orientation Pathway using Induced Cell Polarity in S2 Cells

Asymmetric cell division is intensely studied because it can generate cellular diversity as well as maintain stem cell populations. Asymmetric cell division requires mitotic spindle alignment with intrinsic or extrinsic polarity cues, but mechanistic detail of this process is lacking. Here, we develop a method to construct cortical polarity in a normally unpolarized cell line and use this metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2005